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Abstract 
Recent advances in video capturing and display technologies, along with the exponentially increasing demand of 

video services, challenge the video coding research community to design new algorithms able to significantly 

improve the compression performance of the current H.264/AVC standard. This target is currently gaining 

evidence with the standardization activities in the High Efficiency Video Coding (HEVC) project. The distortion 

models used in HEVC are mean squared error (MSE) and sum of absolute difference (SAD). However, they are 

widely criticized for not correlating well with perceptual image quality. The structural similarity (SSIM) index  

has  been  found  to  be  a  good indicator of perceived image quality. Meanwhile, it is computationally simple 

compared with other state-of-the-art perceptual quality measures and has a number of desirable mathematical 

properties for optimization tasks. We propose a perceptual video coding method to improve upon the current 

HEVC based on an SSIM-inspired divisive normalization scheme as an attempt to transform the DCT domain 

frame prediction residuals to a perceptually   uniform   space   before   encoding. 

Based on the residual divisive normalization process, we define a distortion model for mode selection and show 

that such a divisive normalization strategy largely simplifies the subsequent perceptual rate-distortion 

optimization procedure. We further adjust the divisive normalization factors based on local content of the video 

frame. Experiments show that the scheme can achieve significant gain in terms of rate-SSIM performance and 

better visual quality when compared with HEVC 

Index Terms— SSIM index, Normalization factor, perceptual video coding, rate distortion optimization, 

residual divisive normalization, H.264/AVC coding 

 

I. INTRODUCTION 
The main objective of video coding is to 

optimize the perceptual quality of the reconstructed 

video within available bit rate. Ideally, the distortion 

model used in the video coding framework should 

correlate perfectly with perceived distortion of the 

Human Visual System (HVS), which is the ultimate 

consumer of the video content. However, almost all 

existing video coding techniques use the Sum of 

Absolute Difference (SAD) or Sum of Square 

Difference (SSD) as the distortion model. It has been 

widely criticized in the literature that SAD and SSD 

measures correlate poorly with the HVS [1]. 

Fortunately, a lot of research has been done recently 

towards perceptual image quality assessment  (IQA)  

models  that  perform significantly better than SSD or 

SAD in predicting perceptual image quality. Among 

them, the structural similarity (SSIM) index [1] is 

widely used in quantifying compression artifacts 

because of  its  accuracy,  simplicity and  efficiency. 

Recently, there have been a number of efforts to 

design  video  coding  techniques  based  on  the 

SSIM index, e.g., mode selection [2] and rate control 

[3]. 

Sum of Absolute difference is algorithm to 

measure the similarity. Absolute difference between 

each pixel in the original block and corresponding 

pixel in the block being used for comparison. This 

will create block similarity. The main purpose of 

object recognition is that it will identify   even   small   

part   of   image   can   be identified. 

 

E.g. Template                  Search Image 

2 5 5                                2 7 5 8 6 

4 0 7                                1 7 4 2 7 

7 5 9                                8 4 6 8 5 

 

Left                 Center             Right 

 

0 2 0                  5 0 3               3 3 1 

 

3 7 3                  3 4 5               0 2 0 

 

1 1 3                  3 1 1               1 3 4 

 

The main advantage of object recognition is that 

searching for object inside the image lighting, color, 

direction, size, and shape can be identified and Edge 

detection is so reliability of result. 

Since the HVS has varying sensitivity to 

different frequencies, frequency weighting [4] has 

been incorporated in the quantization process in 
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many picture coding standards, from JPEG to 

H.264/AVC high profile [5], [6]. However, in these 

standards, the quantization matrix is usually pre  

determined  and  is  fixed  once  the  coding process 

starts. More advanced perceptual models that take 

into account supra-threshold distortion criteria and 

masking effect are not Considered. In this paper, 

inspired by the SSIM index [1] and its derivation in 

DCT domain [7], we propose a joint residual divisive 

normalization and rate distortion optimization (RDO) 

scheme for video coding. The normalization  factor  

is  obtained  from  the prediction MB. As a result, the 

quantization matrix is determined adaptively and no 

side information is required to be transmitted from 

the encoder to the decoder. Furthermore, motivated 

by the SSIM index, we define a new distortion model 

and propose a perceptual RDO scheme for mode 

selection. For many years, there have been numerous 

efforts in developing subjective- equivalent quality 

models in an attempt to generate quality scores close 

to opinions of human viewers’ 

The   more   accurate   the   model   is,   the   

more distortion can be allowed without generating 

perceivable artifact, and the better comparison can be 

achieved. 

 

II. SSIM INSPIRED RESIDUAL 

DIVISIVE NORMALIZATION 
Our  work  follows  the  predictive  video  coding 

framework,  where  previously  coded  frames  are 

used to predict the current frame, and only the 

residuals after prediction is coded. Let C(k) be the 

kth DCT transform coefficient for residuals, then the 

normalized coefficient is computed as C0(k) = C(k)/f 

where f is a positive normalization factor. The 

quantization of the normalized coefficients, for a 

given predefined Qs, is performed as follows 

            (1) 

where p is the rounding offset in the quantization. 

 

This divisive normalization scheme can be 

interpreted in two ways. One can apply an adaptive 

normalization factor, followed by quantization with a 

predefined fixed step Qs. Alternatively, one can 

define an adaptive quantization matrix for each MB 

and thus each coefficient is quantized with a different 

quantization step Qs f. By (1), we see that these two 

interpretations are equivalent. 

In the context of still image processing and coding, 

several approaches have been used to derive the 

normalization factor, which can be defined as the 

sum of the squared neighboring coefficients plus a 

constant [8], or derived from a local statistical image 

model [9]. Since our objective here is to optimize  

 
Fig.1.Energy compensation factors vs quantization 

step Qs for different video sequences. 

 

The SSIM index, we employ a convenient approach 

based on the DCT domain SSIM index. The DCT 

domain SSIM index was first presented by 

Channappayya et al. [7]. 

(2) 

 

where X(k) and Y (k) represent the DCT coefficients 

for the input signals x and y, respectively.  C1 and C2 

are constants used to avoid instability when the 

means and variances are close to zero and N denotes 

the block size. This equation shows that the SSIM 

index is composed of the product of two terms, which 

are the normalized squared errors of DC and AC 

coefficients, respectively. Moreover, the 

normalization is conceptually consistent with the 

light adaptation (luminance masking) and contrast 

masking effects of the HVS [10]. 

We divide each MB into l sub-MBs for DCT 

transform. Normalization factors for DC and AC 

coefficients in each MB are desired to be  

       (3)  
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   (4)  

 

Where Xi(k) denotes the kth DCT coefficient in the 

ith sub-MB and E represents the mathematical 

expectation operator. 

These normalization factors would need to be 

computed at both the encoder and the decoder. The 

difficulties are that the distorted MB is not  

 
Fig. 2. Diagram of the proposed scheme. 

 

available at the encoder before it is coded, and the 

original  MB  is  completely  inaccessible  at  the 

decoder.    Fortunately,    for    each    mode,    the 

prediction MB is available at both encoder and 

decoder sides. Assuming that the properties of the 

prediction MB are similar to those of the original and  

distorted  MBs,  we  can  approximate  the 

normalization factor as  

        (5) 

 

   (6) 

 

where Zi(k) is the kth DCT coefficient of the ith 

prediction sub-MB for each mode. For intra mode, 

we use the MB at the same position in the previous 

coded frame Since the energy of AC coefficients may 

be lost due to quantization, we use a compensation 

factor s to bridge the difference between the energy 

of AC coefficients in the pre-diction MB and the 

original MB, 

                                        (7) 

As depicted in Fig. 1, s exhibits an approximately 

linear relationship with Qs, which can be modeled 

empirically as 

S=1+0:005 Qs                                                     (8) 

Finally, analogous to [11], we define the quantization 

ma-trix for 4x4 DCT transform coefficients as 

Wi,j=Qi,j/Qs                                                          (9) 

Consider   signal x & y are non negative image 

signals which have been aligned with each other.(e.g 

spatial patches extracted from each imaeg).If we 

consider one of signal have perfect quality then the 

similarity measure can serves as quantative 

measurement of quality second signal. 

There are three way luminance, contrast, structure. 

First luminance    of  dc E each 

signal is compared it will find the discrete signal and 

mean intensity.second mean intensity is removed   

from   the   signal   and   calculate   the standard  

deviation  to  estimate  signal contrast. Third the 

signal is normalized(divided) by it own standard 

deviation. 

 

III. PERCEPTUAL RATE 

DISTORTION OPTIMIZATION 
The RDO process in video coding can be 

expressed by min-imizing the perceived distortion D 

with the number of used bits R subjected to a 

constraint   Rc.   This   can   be  converted   to   an 

unconstrained optimization problem as  

 

minfJg where J=D + R                                 (10) 

 

where J is called the Rate Distortion (RD) cost and is 

known as the Lagrange multiplier which controls the 

trade-off between R and D 

In Conventional RDO schemas, distortion models 

such as SAD and SSD are used in actual 

implementations.  Here  we  replace  them  with  a 

new distortion model that is consistent with the 

residual normalization process. An illustrated in 

Fig.2, the distortion model is defined as the SSD 

between  the  normalized  coefficients,  which  is 

expressed by 

  (11) 

 

Based on (10), the RDO problem can be 

approximated as 
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     (12) 

The Lagrange parameter dc for DC coefficient is 

obtained by calculating the derivative of J with 

respect to Rdc,Then setting it to zero. Solving dc for 

          (13) 

                               (14) 

In  H.264,  the  Lagrange  multiplier  derived  for 

optimizing MSE is given by 

                            (15) 

and   the   quantization   step   after   applying   the 

quantization matrix can be expressed as 

  (16) 

Combining (14) to (16) ,the Lagrange parameter for 

DC coefficient is computed as 

 
This suggests that we can use the Lagrange 

multiplier derived with the predefined quantization 

step in our perceptual RDO scheme. The Lagrange 

multiplier for AC coefficients, ac, can be derived in a 

similar fashion. 

In  Perceptual  video  coding  techniques  is that  

it  consider all  the  data that  humans  cannot 

perceive as superfluous data and discard them 

From the residual normalization point of view, the 

distortion model calculates the SSD between the 

normalized original and quantized coefficients,  as  

shown  in  Fig.  2.  In  this way, the normalized 

residuals are quantized with the pre defined constant 

quantization step, which also explains why we can 

use H: 264  in our perceptual RDO scheme, 

 

 

IV. IMPLEMENTATION AND 

EXPERIMENTS 
Since DCT is an orthogonal transform that obeys 

Parseval’s theorem, we have  

 

                                   (18) 

 

    (19) 

Therefore, although our algorithm are 

 

derived in the DCT domain, in actual 

Implementations, it is not necessary to perform actual 

DCT transform for each block in order to perform 

normalization. 

The proposed schema has been implemented on 

theH.264/AVC reference software JM15.1.The 

common coding configurations are set as follows: 

only 4*4 DCT transform is enabled; all available 

inter and intra modes are enabled; five reference 

frames: one I frames followed by 99 P frames; high 

complexity RDO and the fixed quantization 

parameters (QP).We employ the method proposed in 

[12] to calculate the difference between two R-D 

curves. 

Furthermore, we use two different sets of QP values 

in the experiments:QP1={18,22,26,30} and 

QP2={26,30,34,38},where QP1 represents a high bit 

rate coding configuration.  

From table 1, it can be observed that over a wide 

range of test sequences ,our proposed schema 

achieves average rate reduction of 15.11% for QP1 

and 17.23 % for Qp2 for fixed SSIM values, and the 

maximum coding gain is 37%.It is observed that our 

schema performs better when there exist significant 

statistical difference in the same frame. For example, 

in sequences Bridge and Flower. The rate-distortion 

performance of Flower is shown in Fig.3.It is also 

observed that the gains become more significant at 

middle bit-rates. This may be explained as follows 

.At high bit rate, the quantization step is relatively 

smaller and thus the difference of quantization steps 

among the MBs. 

coefficient are severely distorted, the normalization 

factors derived from the prediction frame does not 

precisely represent the properties of original frame. 

This is likely because these frames allow us to 

borrow bits more aggressively from the regions with 

complex texture or high contrast and allocating them 

to the region with relatively simple textures (low 

normalization factor).  
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The R-D performances for sequences with various 

resolutions are show in figs.7 .It can be observed that 

the proposed schema achieves better R-D 

performance over the full range of QP values. 

Moreover, the gains become more significant at 

middle bit-rates .The reason may be that at high 

bit rate, the quantization step is small and thus the 

difference of quantization steps among the MBs are 

not significant, while at low bit rate, since the AC 

coefficient are severely distorted, the normalization 

factors derived from the prediction frame do not 

precisely represent the properties of the original 

frame. 

When evaluating the coding complexity overhead, we 

calculate as 

                                 (20) 

Where T H.264    and T pro indicate the total coding 

time for the sequence with H.264/AVC and the 

proposed schemes, respectively. The coding time is 

obtained by encoding 100 frames of IPPP GOP 

structure with Intel 2.83GHz Core Processor and 

4GB random access memory. As indicated in section 

II-D, we do not need to perform DCT transform at 

either the encoder or the decoder .Therefore; it is 

observed that the encoding overhead is negligible. 

The complexity of the decoder is increased by 8.48 % 

on average. 

To further validate our scheme, we carried out two 

subjective quality evaluation tests based on a two 

alternative forced choice (2AFC) method. This 

method is widely used in psychophysical studies, 

where in each trail, a subject is shown a pair of video 

sequences and is asked to choose the one he/she 

thinks to have better quality. For each subjective test, 

we selected six pairs of sequences with different 

resolutions. In first test, the sequences were 

compressed by H.264/AVC and the proposed method 

at the same bit rate but with different SSIM levels. In 

the second test, the sequences were coded to achieve 

the same SSIM levels(where the proposed scheme 

uses much lower bit rates ).In the 2AFC test, each 

pair is repeated four times in random order. As a 

result, in each test we obtained 24 2AFC results for 

each subject. Eight subjects participated in the 

experiments. 

 To show the advantage of our divisive normalization 

scheme, the performance comparisons of proposed 

scheme, the state of art SSIM based RDO scheme 

[31] and standard quantization matrix based video 

coding scheme in H.264/AVC.The proposed divisive 

normalization scheme achieves better coding 

performance. 

 

V. Conclusion 
We propose an SSIM-inspired novel joint 

residual divisive normalization and rate distortion 

optimization schema. The novelty of the scheme lies 

in normalizing the transform coefficients based on 

the DCT domain SSIM index and defining a new 

distortion model based on the divisive normalization 

approach. The proposed scheme demonstrates 

superior performance as compared to the state –of-

the-art H.264 video codec by offering significant rate 

reduction, while keeping the same level of SSIM 

values.  

 

Table 1. Performance of the proposed scheme (anchor: H.264/AVC video coding). 



R.Preethi Int. Journal of Engineering Research and Applications                                  www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 1, (Part - 4) January 2016, pp.127-133 

 www.ijera.com                                                                                                                                132|P a g e  

 
Fig. 3. Rate-SSIM performance comparison of the 

proposed and H.264/AVC coding schemes. 
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